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Detecting fresh impacts in HiRISE images with fully-convolutional networks



The current martian cratering rate, Daubar et al. (2013)
Fresh impacts
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from Daubar et al. (2013)

• Found by looking at before/after CTX images (Daubar et al.)

• Crater diameters range from ~2.1—33.8 meters
• Craters > 3.9m occur at a rate of 1.65x10-6 craters/km2/year

• (or about 240 per year)

• Often appear in clusters
• Blast zones are 10-100x the diameter of the crater itself

• Relatively rare event, little training data
• We have 308 images of confirmed impacts



Enlisting the help of citizen scientists to generate labels en masse with Zooniverse
Labeling fresh impacts
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Enlisting the help of citizen scientists to generate labels en masse with Zooniverse
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Merging labels by 50% inter-rater agreement (voting)
Multi-label problem
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Extracting labeler confidence: real-valued labels
Multi-label problem
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Labeling image regions at the pixel-level. Example: MSRC dataset.
Semantic Segmentation
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The goal of this work:

Example segmented images:

Some approaches:

• TextureCam (Semantic Texton Forests, Shotton et al.)
• Region-based CNNs (R-CNNs, Girshick et al.)
• Fully-convolutional networks (FCNs, Long et al.)



CNNs that work on input of any size
Fully Convolutional Networks (Deep Filters)
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Most CNNs: Fixed size input Convolution: Any size input

Problem: Fully connected (FC) layers Solution: Convert  FC to conv layers.

*

*

=

=



Long et al., 2015
Fully Convolutional Networks for Semantic Segmentation
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Long et al., 2015
Fully Convolutional Networks for Semantic Segmentation
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Long et al., 2015
Fully Convolutional Networks for Semantic Segmentation

(VGG-19)

Forward pass: 150ms on GPU



Instead of pixel classification, do regression and choose confidence thresholds
Training with real-valued labels
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Each pixel is a 2-vector
Per-pixel loss is the mean-squared error
of the network’s pixel and the label’s pixel



Instead of pixel classification, do regression and choose confidence thresholds
Training with real-valued labels
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Each pixel is a 2-vector

Fresh Impacts Network Heatmap Binary Segmentation
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Each pixel is a 2-vector

Fresh Impacts Network Heatmap Binary Segmentation



Instead of pixel classification, do regression and choose confidence thresholds
Training with real-valued labels
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Each pixel is a 2-vector

Old Impacts Network Heatmap Binary Segmentation
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Each pixel is a 2-vector

Old Impacts Network Heatmap Binary Segmentation



Instead of pixel classification, do regression and choose confidence thresholds
Training with real-valued labels
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Each pixel is a 2-vector

Old Impacts Network Heatmap Binary Segmentation



Does the fully-convolutional network really know what a fresh impact looks like?
Early difficulty: troublesome priors
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Uniform Noise Network Heatmap

Every image the network saw
had a fresh impact somewhere.

Solution: Add images without
fresh impacts to the dataset.

Uniform Noise Network Heatmap



Does the fully-convolutional network really know what a fresh impact looks like?
Early difficulty: troublesome priors
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Uniform Noise Network Heatmap

Every image the network saw
had a fresh impact somewhere.

New problem: Unbalanced
data biased towards non-impacts.

Uniform Noise Network Heatmap



Real solution: Curriculum Learning (Bengio et al., 2009)
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Model trained with real-valued merged labels, tested on discrete merged labels
Evaluation in terms of precision and recall
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After 100 “easy” epochs after 300 “moderate” epochs after 1 “hard” epoch

Training set: 280 fresh impact images + 1020 impact-free images
Testing set: 15 fresh impact images + 132 impact-free images 
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1. Sensitivity to noise
Robustness checks

Input Image
Increasingly Strong Noise Network Heatmap Binary Segmentation
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2. Sensitivity to translation
Robustness checks

Input Image Stream Network Heatmap Binary Segmentation
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2. Sensitivity to similar landforms (araneiforms)
Robustness checks

Input Image Stream Network Heatmap Binary Segmentation
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Found small, potentially fresh impacts (from 10 HiRISE browse images)
HiRISE image exploration with the FCN

Possible fresh impacts (~5%):

Not fresh impacts (~95%):

“Re-discovered” fresh impact
from training set

FCN selected ~5%
of considered patches.
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Next steps

• Cross validation (running now!)

• Comparison of other FCN architectures, e.g. AlexNet, GoogLeNet, VGG-16
• VGG-16 already implemented

• Cleaning up code (constantly working on this)

• Model compression

Thanks!

Working on COSMIC in the coming semester

First step of the curriculum
for cross validation (5 folds pictured)

before I ran out of memory




